
Parallel Fortran Unit Testing Framework
Installation, Usage, and API

Tom Clune

Advanced Software Technology Group
Computational and Information Sciences and Technology Office

NASA Goddard Space Flight Center

April 10, 2014

Tom Clune (ASTG) pFUnit - NCAR April 10, 2014 1 / 117

Outline

1 Introduction
Overview
Quick review of testing

2 Introduction to pFUnit

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 2 / 117

Outline

1 Introduction
Overview
Quick review of testing

2 Introduction to pFUnit

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 3 / 117

Class Overview

Primary Goals

Learn how to use pFUnit 3.0 to create and run unit-tests

Learn how to apply test-driven development

Gain greater appreciation for software testing

Prerequisites

Familiarity with F95 syntax

Familiarity with MPI1

Access to Fortran compiler supported by pFUnit 3.0

Possibly beneficial skills

Various F2003 syntax

Object-oriented programming

CMake

1Only for MPI-specific sections.
Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 4 / 117

Syllabus

Thursday PM - Introduction to pFUnit
I Overview of pFUnit and unit testing
I Build and install pFUnit
I API for pFUnit
I The pFUnit preprocessor

Friday AM - Advanced topics (including TDD)
I User-defined test subclasses
I Parameterized tests
I Introduction to TDD
I Examples and exercises usind TDD and pFUnit

Friday PM - Bring-your-own-code
I Introduce pFUnit into the build process for your own code
I Apply TDD within your own code
I Supplementray exrecises will be available

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 5 / 117

Materials

These slides can be downloaded at ...

The exercises can be downloaded at ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 6 / 117

Outline

1 Introduction
Overview
Quick review of testing

2 Introduction to pFUnit

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 7 / 117

Quick review of testing

What is a (software) test?

What are the different types of software tests?

What are desirable properties for unit tests?

What is the anatomy of a unit test?

What is a test “fixture”

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 8 / 117

A test by any other name ...

A test is any mechanism that can be used to verify a software
implementation. Examples include:

Conditional termination during execution:

IF (PA(I,J)+PTOP.GT .1200.) &

call stop_model(’ADVECM: Pressure diagnostic error ’,11)

Diagnostic print statement

print*, ’loss of mass = ’, deltaMass

Inspection of rendered output:
Temp1

5 10 15

10

20

30

40

50

60

Temp2

5 10 15

10

20

30

40

50

60

Difference

5 10 15

10

20

30

40

50

60

Student Version of MATLAB

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 10 / 117

Taxonomy of Testing

Scope
I Unit
I Integration
I System

Acceptance

Stress

Performance

Regression

Access
I Black box
I White box

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 11 / 117

Desirable attributes for tests:

Narrow/specific

I Failure of a test localizes defect to small section of code.

Orthogonal to other tests

I Each defect causes failure in one or only a few tests.

Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.

Orthogonal to other tests

I Each defect causes failure in one or only a few tests.

Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.

Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal
I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal
I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable

Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal
I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 12 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)

call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)

call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)

call assertEqual(9., trajectory(2.,3.))

@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))

@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - NCAR April 10, 2014 14 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 15 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 16 / 117

Noteworthy features of pFUnit 3.0

2005 Prototype2

read a book and re-implemted with TDD

2006 Version 1.0 released as open source

2012 Began serious attempt at F2003 implementation

2013 Version 2.0 released - heavy reliance of OO

new and improved preprocessor (test “annotations”)
additional assertions

2013 Version 2.1 released - listened to user feedback

2014 Version 3.0 released3

introduced cmake
test extensions finally “easy”

2Proof to colleague that Fortran (F90) - I cheated
3Would have been 2.1, but bug in gfortran broke backwards compatibility

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 17 / 117

Noteworthy features of pFUnit 3.0

Standard Fortran4

Strong support for multidimensional arrays

Testing of parallel procedures - MPI & OpenMP5

Test fixtures

Parameterized tests

User-defined extensions (OO)

Test annotations (via preprocessor) for greatly improved ease of use

Improved (and maintained) examples

Extensive regression testing with each push

4F2003 with a dash of F2008
5Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 18 / 117

Useful resources

Website/documentation http://pfunit.sourceforge.net

Mailing list: pfunit-support@lists.sourceforge.net

This tutoria

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 19 / 117

http://pfunit.sourceforge.net
pfunit-support@lists.sourceforge.net

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 20 / 117

Supported Configurations1,2

OS Vendor Version

Linux Intel ifort 14.0.2
Linux Intel ifort 13.1.192
Linux GNU gfortran 4.8.33

Linux GNU gfortran 4.9.03

Linux NAG nagfor 5.3.2(981)
OS X Intel ifort 14.0.2
OS X GNU gfortran 4.8.33

OS X GNU gfortran 4.9.03

OS X NAG nagfor 5.3.2(979)

Externally contributed

AIX IBM xlf ???
Windows Intel ifort ???

1In many cases closely related compiler versions will also work.
2We are cautiously optimistic that PGI will soon be supported.
3Not yet released. 4.9.0 experimental currently works. Older versions contained an

insurmountable bug.
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 22 / 117

Obtaining pFUnit

For this discussion we will refer to 3 distinct directories:

root - top directory of downloaded code

build - directory in which build instructions are issued

install - directory where various framework elements will be installed
for later use.

There are 2 ways to obtain the source code for pFUnit:

Via git (read-only):
% git clone git://git.code.sf.net/p/pfunit/code pFUnit

Via tar:
http://sourceforge.net/projects/pfunit/files/latest/download

% tar zxf ./pFUnit.tar.gz

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 24 / 117

git://git.code.sf.net/p/pfunit/code
http://sourceforge.net/projects/pfunit/files/latest/download

What’s inside?

./source

./tests

./Examples

./documentation

./include

./bin

README-INSTALL

CMakeLists.txt

GNUmakefile

COPYRIGHT

LICENSE

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 25 / 117

Building pFUnit

1 Set PFUNIT environment variable to desired installation path

bash: % export PFUNIT=<path>

csh: % setenv PFUNIT <path>

You may want to edit your various login scripts to automatically set
this variable.

2 Decide whether to use CMake (recommended) or just GNU make
3 Choose configuration options

I Build with MPI support
I Build with OpenMP support

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 27 / 117

CMake build instructions

1 % cd <builddir>

2 % cmake <rootdir> <options>

Options:

I -DMPI=YES (include support for MPI)
I -DOPENMP=YES (include support for OpenMP)

3 % make tests

4 % make install

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 29 / 117

GNU make build instructions

1 % cd <rootdir>

2 % make tests <options>
I MPI=YES (include support for MPI)
I OPENMP=YES (include support for OpenMP)
I F90_VENDOR=<vendor> (override default vendor: Intel, GNU, NAG)

3 % make install INSTALL_DIR=$PFUNIT

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 31 / 117

Exercise 0: Build and Install pFUnit in your environment

1 Download pFUnit 3.0
2 Build serial configuration

1 Set $PFUNIT
2 Build with cmake/gmake
3 Install

3 Build MPI configuration (unless skipping MPI exercises)
1 Set $PFUNIT (use different path than for serial)
2 Build with cmake/gmake - use MPI option
3 Install

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 33 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 34 / 117

Simple Example: testing factorial function

file: Exercises/SimpleTest/testFactorial.pf

@test

subroutine testFactorialA ()

use pFUnit_mod

use Factorial_mod

@assertEqual (6, factorial (3))

end subroutine testFactorialA

Things to notice:

Test is preceded by @test

Expected results are indicated with @assertEqual

One must “use” the pFUnit_mod module

The “.pf” suffix is an arbitrary convention

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 36 / 117

Simple Example: testing factorial function

file: Exercises/SimpleTest/testFactorial.pf

@test

subroutine testFactorialA ()

use pFUnit_mod

use Factorial_mod

@assertEqual (6, factorial (3))

end subroutine testFactorialA

Things to notice:

Test is preceded by @test

Expected results are indicated with @assertEqual

One must “use” the pFUnit_mod module

The “.pf” suffix is an arbitrary convention

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 36 / 117

Simple Example: testing factorial function (contd́)

file: Exercises/SimpleTest/testSuites.inc

! Register your test suites here

ADD_TEST_SUITE(testFactorial_suite)

This file is included by the driver

Used to register all your tests

One entry per suite; one suite per file

Default test suite name is derived from the test file name

“testSuites.inc” is mandatory – must be in the include path

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 38 / 117

Simple Example: testing factorial function (contd́)

file: Exercises/SimpleTest/testSuites.inc

! Register your test suites here

ADD_TEST_SUITE(testFactorial_suite)

This file is included by the driver

Used to register all your tests

One entry per suite; one suite per file

Default test suite name is derived from the test file name

“testSuites.inc” is mandatory – must be in the include path

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 38 / 117

Parser Basic Syntax

Assert that two items are equal:

@assertEqual(a, b)

Assert that two items are equal to some tolerance:

@assertEqual(a, b, tolerance)

Register a test procedure

@test

subroutine testProc ()

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 40 / 117

pFUnit Driver

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 41 / 117

Exercise 1: Simple unit tests

1 Build the “SimpleTest” example in the distribution
1 Change directory to ./Exercises/SimpleTest
2 % make tests
3 Verify that 1 test ran successfully.

2 Add a new test in the file
./Exercises/SimpleTest/testFactorial.pf’

1 Create a new test procedure that verifies 5! = 120
2 % make tests
3 Create a new test procedure that verifies 0! = 1
4 % make tests (uh oh!)
5 Fix the implementation
6 % make tests (whew!)

3 Demonstrate tests as a harness
1 Edit factorial.F90
2 Insert a bug (e.g., change ’*’ to ’+’)
3 % make tests

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 43 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 44 / 117

Simple MPI Example: matrix transpose

file: Exercises/SimpleMpiTest/TestTranspose.pf

module TestTranspose_mod

use pFUnit_mod

use Transpose_mod

implicit none

contains

@test(npes =[1])

subroutine testTranspose_1by1(this)

class (MpiTestMethod), intent(inout) :: this

real :: a(1,1)

real :: at(1,1)

integer :: comm

! preconditions

a = 1

at = 0

comm = this%getMpiCommunicator ()

call transpose(comm , a, at)

@mpiAssertEqual (1, at)

end subroutine testTranspose_1by1

end module TestTranspose_mod

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 46 / 117

Simple Mpi Tests

Declare with @test(npes=[<integer_list>])

Framework runs test once for each value of npes

Framework creates a new subcommunicator each time test is run

Framework passes communicator through a mandatory argument

declare as class(MpiTestMethod), intent(inout) :: <arg>6

Passed object has several useful methods:

comm = this%getMpiCommunicator ()

npes = this%getNumProcesses ()

rank = this%getProcessRank ()

Any assertions that fail will attach information about
I npes for failing case
I rank for failing case

6The intent must be inout.
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 48 / 117

Exercise 2: Extend transpose tests

1 Set $PFUNIT to the MPI build
2 Build the “SimpleMpiTest” example in the distribution

1 Change directory to ./Exercises/SimpleMpiTest
2 % make tests
3 Verify that 2 tests ran successfully.

3 Create a new test that works for multiple values of npes.
1 Create a helper function that specifies

aij = aTji = f (i , j) = np ∗ i + j

2 Make arrays a and aT (expected and found) allocatable
3 Fill a and expected aT using helper function
4 Call transpose
5 Assert that the found value is the same as the expected value.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 50 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 51 / 117

Test Fixtures
A test fixture is any mechanism that allows a consistent initialization for
test preconditions.

Group of tests have same initial conditions
Complex sequence of steps to create preconditions
Ensures release of system resources (memory, files, ...)

Testing frameworks generally provide mechanisms to encapsulate the logic
for test preconditions and cleanup. Usually this is in the form of
procedures named setUp() and tearDown().

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 52 / 117

Simple fixture (unencapsulated)

Can be expedient to use a global variable or a persistent file as a
quick-and-dirty fixture:
module SimpleFixture_mod

use pFunit

use Reader_mod

contains

@before

subroutine init()

open(10,file=’tmp.dat ’,status=’new ’)

write (10) 1

write (10) 2

close (10)

end subroutine init

@after

subroutine done()

open(10,file=’tmp.dat ’,status=’unknown ’)

close(10, status=’delete ’)

end subroutine done

...

end module SimpleFixture_mod
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 54 / 117

Simple fixture (contd́)

@before indicates procedure to run before each test in file
I Convention is to call procedure setUp()

@after indicates procedure to run after each test in file
I Convention is to call procedure tearDown()

Because no arguments are passed to procedures, fixture data must be
in the form of global variables (module, common) or the file system
(persistent file)

I Dangerously close to violating rule: “No Side Effects!”

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 56 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 57 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 58 / 117

Exception class

Role: Used to notify/detect “undesired” states during execution. Limited
emulation of exceptions provided by other high-level languages (C++,
Java, Python, etc).
Implementation:

Manages a global, private stack of Exception objects.

Each Exception object has a message, and a location (file+line).

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 60 / 117

Exception API

subroutine throw(message[, location])

subroutine catch(

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 62 / 117

Assert modules

Role: Used to express intended/expected relationships among variables.
Implementation:

Heavily overloaded suite of procedures with consistent style for
interface.

When the intended relationship does not hold, the layer pushes a
self-explanatory Exception onto the global exception stack.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 63 / 117

Logical Assertions

call assertTrue(condition)

call assertFalse(condition)

call assertAny(conditions)

call assertAll(conditions)

call assertNone(conditions)

call assertNotAll(conditions)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 65 / 117

String Assertions

call assertEqual(expected , found)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 67 / 117

Integer Assertions

call assertEqual(expected , found)

Overloaded for up to rank 27

Only supports default KIND

The following are only supported for scalars:

call assertLessThan(a, b) ! a < b

call assertLessThanOrEqual(a, b) ! a <= b

call assertGreaterThan(a, b) ! a > b

call assertGreaterThanOrEqual(a, b) ! a >= b

7Use a support request if you need more.
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 69 / 117

String Assertions

call assertEqual(expected , found)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 71 / 117

API - AssertEqual (Real)

Compare two values and throw exception if different

|a− b| <= δ

call assertEqual(expected , found[, tolerance])

Uses absolute error (as opposed to relative error)
Overloaded for multiple KINDs (32 and 64 bit)
Overlaoded for multiple ranks (up through 5D)
Optional tolerance – default is exact equality
Uses L∞ norm
To reduce exponential number of overloads:

I KIND(expected) <= KIND(found)
I KIND(tolerance) == KIND(found)
I RANK(expected) == RANK(found) or scalar

Example message:

expected: +1.000000 but found: +3.000000;

difference: |+2.000000| > tolerance :+0.000000.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 73 / 117

API - Assert variants (Real)

call assertLessThan(expected , found)

call assertGreaterThan(expected , found)

call assertLessThanOrEqual(expected , found)

call assertGreaterThanOrEqual(expected , found)

If relative tolerance is desired:

|a− b|
|a|

<= δ

call assertRelativelyEqual(expected , found[, tolerance])

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 75 / 117

API - AssertEqual (Complex)

Compare two values and throw exception if different

|a− b| <= δ

call assertEqual(expected , found[, tolerance])

Overloaded for multiple KINDs (32 and 64 bit)

Overlaoded for multiple ranks (up through 5D)

Optional tolerance – default is exact equality

To reduce exponential number of overloads:
I KIND(expected) <= KIND(found)
I KIND(tolerance) == KIND(found)
I RANK(expected) == RANK(found) or scalar

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 77 / 117

Miscellaneous other Assert procedures

call assertIsNaN(x) ! single/double

call assertIsFinite(x) ! single/double

call assertExceptionRaised ()

call assertExceptionRaised(message)

call assertSameShape(expectedShape , foundShape)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 79 / 117

Hierarchy of Test Classes

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 80 / 117

Test

Role: Abstract base class for all test objects.
Implementation: Framework provides various subclasses for
common/generic cases. Users can define custom subclasses for specific
purposes. Provided subclasses include:

TestCase

TestMethod

MpiTestCase

MpiTestMethod

TestSuite

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 81 / 117

TestSuite

Role: Aggregates collection of tests into single entity.
Implementation: TestSuite objects are simultaneously Test objects and
collections of tests. Run() method applies run() to each contained test.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 82 / 117

TestCase class

Role: Abstract Test subclass that provides some services that are common
to most Test subclasses.
Implementation:

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 83 / 117

TestMethod class

Role: Simple concrete Test subclass that supports the common case
where test procedure receives no arguments.
Implementation: Constructor stores a procedure pointer to vanilla
Fortran subroutine with no arguments. A restricted form of test fixture is
permitted by specifying setUp() and tearDown() methods that also have
no arguments. (I.e. fixture is not encapsulated.)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 84 / 117

TestMethod API

Constructor:

function TestMethod(name , method[, setUp , tearDown])

character(len=*), intent(in) :: name

procedure(empty) :: method

procedure(empty) :: setUp

procedure(empty) :: tearDown

Methods:

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 86 / 117

ParameterizedTestCase class

Role: Allows a single test procedure to be execute multiple times with
different input values.
Implementation: ParameterizedTestCase objects contain an
AbstractTestParameter object that encapsulates input. Subclasses of
ParameterizedTestCase must generally also subclass
AbstractTestParameter.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 87 / 117

MpiTestCase class

Role: (Abstract) Extends ParameterizedTestCase with support for MPI.
Implementation: MpiTestCase modifies the runBare() launch mechanism
to create an appropriately sized MPI group and corresponding
subcommunicator. Processes within that group then call the user’s test
procedure, while any remaining processes wait at a barrier.
MPI based tests must not use MPI_COMM_WORLD, and must instead obtain
MPI context from the passed test object.
The following convenient type-bound procedures are provided:

getProcessRank () ! returns rank within group

getNumProcesses () ! returns size of group

getMpiCommunicator () ! returns the bare MPI communicator

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 89 / 117

MpiTestMethod class

Role: Simple concrete Test subclass that supports common MPI cases
that just need basic MPI context.
Implementation: Analogous to the vanilla TestMethod, except that user
test procedures are now passed an object which must be queried for any
MPI context that the test needs.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 90 / 117

MpiTestMethod API

Constructor:

function MpiTestMethod(name , method , numProcesses , [, setUp , tearDown])

character(len=*), intent(in) :: name

procedure(empty) :: method

integer :: numProcesses ! requested

procedure(empty) :: setUp

procedure(empty) :: tearDown

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 92 / 117

TestResult class

Role: “Scorecard” – accumulates information about tests as they run.
Implementation: Each run() method for Test objects has a mandatory
TestResult argument. The Visitor pattern is used to allow the TestResult
object to manage and monitor the test as it progresses.
Note: Visitor is a somewhat advanced pattern and uses OO capabilities in
a nontrivial manner. Users should not need to be aware of this, but
developers of framework extensions likely will.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 93 / 117

Abstract BaseTestRunner class

Role: Runs a test (usually a TestSuite).
Implementation: Run() method constructs and configures a TestResult
object, then runs the passed Test object.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 94 / 117

TestRunner class

Role: Default Runner for pFUnit.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 95 / 117

RobustRunner class

Role: Runner subclass that executes tests within a separate process.
Implementation: Collaborates with SubsetRunner. RobustRunner restarts
SubsetRunner if it detects a hang or a crash. Currently a bit unreliable.
(Irony)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 96 / 117

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Basic pFUnit Example
Simple MPI
Simple Fixtures (unencapsulated)
Testing for error handling
API
Parser and Driver

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 97 / 117

Annotations: Miscellaenous

@suite

Overrides default name for generated function which constructs test
suite for the input file. Default is <base>_suite for file with external
test procedures, and <module_name>_suite for files that contain a
module.

@before

Indicates next line begins a setUp() procedure for subsequent test
procedures.

@after

Indicates next line begins a tearDown() procedure for subsequent test
procedures.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 99 / 117

Annotations: @assert*

@assert *(...)

1 Calls corresponding Fortran assert procedure

2 Inserts argument for file & line number

3 Inserts conditional return if exception is thrown

For example, if line 100 of file ’myTests.pf’ is:

@assertEqual(x, y, tolerance)

Expands to

!@assertEqual(x, y, tolerance)

call assertEqual(x, y, tolerance , &

& SourceLocation(’myTests.pf’, 100))

if (anyExceptions ()) return

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 101 / 117

Annotations @test

@test

@test(<options >)

Indicates that next line begins a new test procedure

Appends test procedure in the file’s TestSuite

Accepts the following options:
I ifdef=<token> Enables conditional compilation of test
I npes=[<list-of-integers>] Specifies that test is to run in a

parallel context on the given numbers of processes.
I esParameters={expr} Run this test once for each value in expr. Expr

can be an explicit array of TestParameter’s or a function that returns
sech an array.

I cases=[<list-of-integers>] Alternative mechanism for specifying
test parameters where a single integer is passed to the test constructor.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 103 / 117

Annotations: @testCase

@testCase

@testCase(<options >)

Indicates next line defines a new derived type which extends TestCase.
All test procedures in file must accept a single argument of that
extended type.
Accepts the following options:

I constructor=<name> Specifies the name of the function to construct
corresponding test object. Default is a constructor with same name as
derived type8

I npes=[<list-of-integers>] Indicates that extension is a subclass
of MpiTestCase, and provides a default set of values for NPES for all
test procedures in the file. Individual tests can override.

I esParameters={expr} Indicates that extension is a subclass of
ParameterizedTestCase, and provides a default set of parameters for all
tests in the file. Can be overridden by each test.

I cases=[<list-of-integers>] Alternative mechanism for specifying
default test parameters where a single integer is passed to the test
constructor.

8This F2003 feature is somewhat unreliable - esp. prior to 14.0.2.
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 105 / 117

Annotations: @testParameter

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 107 / 117

pFUnit driver

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - NCAR April 10, 2014 108 / 117

Outline

1 Introduction

2 Introduction to pFUnit

3 Advanced pFUnit
OO Fortran - what you need to know
pFUnit test Hierarchy
Fixtures (encapsulated)
Parameterized Tests
Test Listeners and Runners

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Advanced pFUnit - NCAR April 10, 2014 109 / 117

Outline

1 Introduction

2 Introduction to pFUnit

3 Advanced pFUnit
OO Fortran - what you need to know
pFUnit test Hierarchy
Fixtures (encapsulated)
Parameterized Tests
Test Listeners and Runners

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Advanced pFUnit - NCAR April 10, 2014 110 / 117

Outline

1 Introduction

2 Introduction to pFUnit

3 Advanced pFUnit
OO Fortran - what you need to know
pFUnit test Hierarchy
Fixtures (encapsulated)
Parameterized Tests
Test Listeners and Runners

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Advanced pFUnit - NCAR April 10, 2014 111 / 117

Outline

1 Introduction

2 Introduction to pFUnit

3 Advanced pFUnit
OO Fortran - what you need to know
pFUnit test Hierarchy
Fixtures (encapsulated)
Parameterized Tests
Test Listeners and Runners

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Advanced pFUnit - NCAR April 10, 2014 112 / 117

Outline

1 Introduction

2 Introduction to pFUnit

3 Advanced pFUnit
OO Fortran - what you need to know
pFUnit test Hierarchy
Fixtures (encapsulated)
Parameterized Tests
Test Listeners and Runners

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Advanced pFUnit - NCAR April 10, 2014 113 / 117

Outline

1 Introduction

2 Introduction to pFUnit

3 Advanced pFUnit
OO Fortran - what you need to know
pFUnit test Hierarchy
Fixtures (encapsulated)
Parameterized Tests
Test Listeners and Runners

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Advanced pFUnit - NCAR April 10, 2014 114 / 117

Outline

1 Introduction

2 Introduction to pFUnit

3 Advanced pFUnit

4 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - NCAR April 10, 2014 115 / 117

References

pFUnit: http://sourceforge.net/projects/pfunit/

Tutorial materials
I https://modelingguru.nasa.gov/docs/DOC-1982
I https://modelingguru.nasa.gov/docs/DOC-1983
I https://modelingguru.nasa.gov/docs/DOC-1984

TDD Blog
https://modelingguru.nasa.gov/blogs/modelingwithtdd

Test-Driven Development: By Example - Kent Beck

Mller and Padberg,”About the Return on Investment of Test-Driven
Development,” http://www.ipd.uka.de/mitarbeiter/muellerm/

publications/edser03.pdf

Refactoring: Improving the Design of Existing Code - Martin Fowler

JUnit http://junit.sourceforge.net/

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - NCAR April 10, 2014 116 / 117

http://sourceforge.net/projects/pfunit/
https://modelingguru.nasa.gov/docs/DOC-1982
https://modelingguru.nasa.gov/docs/DOC-1983
https://modelingguru.nasa.gov/docs/DOC-1984
https://modelingguru.nasa.gov/blogs/modelingwithtdd
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://junit.sourceforge.net/

Acknowledgements

This work has been supported by NASA’s High End Computing
(HEC) program and Modeling, Analysis, and Prediction Program.

Many thanks to team members Carlos Cruz and Mike Rilee for
helping with implementation, regression testing and documentation.

Special thanks to members of the user community that have made
contributions.

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - NCAR April 10, 2014 117 / 117

	Introduction
	Overview
	Quick review of testing

	Introduction to pFUnit
	pFUnit overview
	Build and Install
	Basic pFUnit Example
	Simple MPI
	Simple Fixtures (unencapsulated)
	Testing for error handling
	API
	Parser and Driver

	Advanced pFUnit
	OO Fortran - what you need to know
	pFUnit test Hierarchy
	Fixtures (encapsulated)
	Parameterized Tests
	Test Listeners and Runners

	Test-driven development

